197 research outputs found

    Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia

    Get PDF
    It is well established that faces are processed by mechanisms that are not used with other objects. Two prominent hypotheses have been proposed to characterize how information is represented by these special mechanisms. The spacing hypothesis suggests that face-specific mechanisms primarily extract information about spacing among parts rather than information about the shape of the parts. In contrast, the holistic hypothesis suggests that faces are processed as nondecomposable wholes and, therefore, claims that both parts and spacing among them are integral aspects of face representation. Here we examined these hypotheses by testing a group of developmental prosopagnosics (DPs) who suffer from deficits in face recognition. Subjects performed a face discrimination task with faces that differed either in the spacing of the parts but not the parts (spacing task), or in the parts but not the spacing of the parts (part task). Consistent with the holistic hypothesis, DPs showed lower performance than controls on both the spacing and the part tasks, as long as salient contrast differences between the parts were minimized. Furthermore, by presenting similar spacing and part tasks with houses, we tested whether face-processing mechanisms are specific to faces, or whether they are used to process spacing information from any stimulus. DPs' normal performance on the tasks of two houses indicates that their deficit does not result from impairment in a general-purpose spacing mechanism. In summary, our data clearly support face-specific holistic hypothesis by showing that face perception mechanisms extract both part and spacing information

    A unified coding strategy for processing faces and voices

    Get PDF
    Both faces and voices are rich in socially-relevant information, which humans are remarkably adept at extracting, including a person's identity, age, gender, affective state, personality, etc. Here, we review accumulating evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies which suggest that the cognitive and neural processing mechanisms engaged by perceiving faces or voices are highly similar, despite the very different nature of their sensory input. The similarity between the two mechanisms likely facilitates the multi-modal integration of facial and vocal information during everyday social interactions. These findings emphasize a parsimonious principle of cerebral organization, where similar computational problems in different modalities are solved using similar solutions

    An efficient algorithm for minimizing earliness, tardiness, and due-date costs for equal-sized jobs

    Get PDF
    Department of Logistics2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    The categories, frequencies, and stability of idiosyncratic eye-movement patterns to faces

    Get PDF
    The spatial pattern of eye-movements to faces considered typical for neurologically healthy individuals is a roughly T-shaped distribution over the internal facial features with peak fixation density tending toward the left eye (observer's perspective). However, recent studies indicate that striking deviations from this classic pattern are common within the population and are highly stable over time. The classic pattern actually reflects the average of these various idiosyncratic eye-movement patterns across individuals. The natural categories and respective frequencies of different types of idiosyncratic eye-movement patterns have not been specifically investigated before, so here we analyzed the spatial patterns of eye-movements for 48 participants to estimate the frequency of different kinds of individual eye-movement patterns to faces in the normal healthy population. Four natural clusters were discovered such that approximately 25% of our participants' fixation density peaks clustered over the left eye region (observer's perspective), 23% over the right eye-region, 31% over the nasion/bridge region of the nose, and 20% over the region spanning the nose, philthrum, and upper lips. We did not find any relationship between particular idiosyncratic eye-movement patterns and recognition performance. Individuals' eye-movement patterns early in a trial were more stereotyped than later ones and idiosyncratic fixation patterns evolved with time into a trial. Finally, while face inversion strongly modulated eye-movement patterns, individual patterns did not become less distinct for inverted compared to upright faces. Group-averaged fixation patterns do not represent individual patterns well, so exploration of such individual patterns is of value for future studies of visual cognition

    Start position strongly influences fixation patterns during face processing: Difficulties with eye movements as a measure of information use.

    Get PDF
    Fixation patterns are thought to reflect cognitive processing and, thus, index the most informative stimulus features for task performance. During face recognition, initial fixations to the center of the nose have been taken to indicate this location is optimal for information extraction. However, the use of fixations as a marker for information use rests on the assumption that fixation patterns are predominantly determined by stimulus and task, despite the fact that fixations are also influenced by visuo-motor factors. Here, we tested the effect of starting position on fixation patterns during a face recognition task with upright and inverted faces. While we observed differences in fixations between upright and inverted faces, likely reflecting differences in cognitive processing, there was also a strong effect of start position. Over the first five saccades, fixation patterns across start positions were only coarsely similar, with most fixations around the eyes. Importantly, however, the precise fixation pattern was highly dependent on start position with a strong tendency toward facial features furthest from the start position. For example, the often-reported tendency toward the left over right eye was reversed for the left starting position. Further, delayed initial saccades for central versus peripheral start positions suggest greater information processing prior to the initial saccade, highlighting the experimental bias introduced by the commonly used center start position. Finally, the precise effect of face inversion on fixation patterns was also dependent on start position. These results demonstrate the importance of a non-stimulus, non-task factor in determining fixation patterns. The patterns observed likely reflect a complex combination of visuo-motor effects and simple sampling strategies as well as cognitive factors. These different factors are very difficult to tease apart and therefore great caution must be applied when interpreting absolute fixation locations as indicative of information use, particularly at a fine spatial scale

    What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats

    Get PDF
    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes

    Face Inversion Reduces the Persistence of Global Form and Its Neural Correlates

    Get PDF
    Face inversion produces a detrimental effect on face recognition. The extent to which the inversion of faces and other kinds of objects influences the perceptual binding of visual information into global forms is not known. We used a behavioral method and functional MRI (fMRI) to measure the effect of face inversion on visual persistence, a type of perceptual memory that reflects sustained awareness of global form. We found that upright faces persisted longer than inverted versions of the same images; we observed a similar effect of inversion on the persistence of animal stimuli. This effect of inversion on persistence was evident in sustained fMRI activity throughout the ventral visual hierarchy, including the lateral occipital area (LO), two face-selective visual areasβ€”the fusiform face area (FFA) and the occipital face area (OFA)β€”and several early visual areas. V1 showed the same initial fMRI activation to upright and inverted forms but this activation lasted longer for upright stimuli. The inversion effect on persistence-related fMRI activity in V1 and other retinotopic visual areas demonstrates that higher-tier visual areas influence early visual processing via feedback. This feedback effect on figure-ground processing is sensitive to the orientation of the figure

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Cognitive and behavioral predictors of light therapy use

    Get PDF
    Objective: Although light therapy is effective in the treatment of seasonal affective disorder (SAD) and other mood disorders, only 53-79% of individuals with SAD meet remission criteria after light therapy. Perhaps more importantly, only 12-41% of individuals with SAD continue to use the treatment even after a previous winter of successful treatment. Method: Participants completed surveys regarding (1) social, cognitive, and behavioral variables used to evaluate treatment adherence for other health-related issues, expectations and credibility of light therapy, (2) a depression symptoms scale, and (3) self-reported light therapy use. Results: Individuals age 18 or older responded (n = 40), all reporting having been diagnosed with a mood disorder for which light therapy is indicated. Social support and self-efficacy scores were predictive of light therapy use (p's<.05). Conclusion: The findings suggest that testing social support and self-efficacy in a diagnosed patient population may identify factors related to the decision to use light therapy. Treatments that impact social support and self-efficacy may improve treatment response to light therapy in SAD. Β© 2012 Roecklein et al
    • …
    corecore